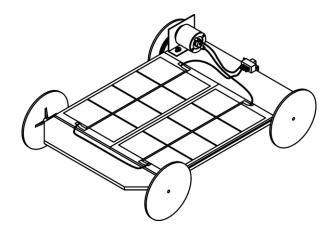

OVERVIEW

INTRO SOLAR CAR (Code: SCRINT)

DESCRIPTION


The *INTRO SOLAR CAR* is a four-wheeled vehicle, driven by Scorpio Technology's High Performance electric motor. The power source is two purpose-designed solar panels. Power to the wheels is transferred from the motor by gears. This car will run on a smooth level surface from 25% sunlight upwards.

Each Solar panel produces 2.0 Volts and 0.9 Amps, and they can be connected in series or parallel.

By building and experimenting with this car students will gain a significant insight into renewable energy, and also the advantage of low friction wheels.

Alternative Energy

OVERVIEW – Intro Solar Car

WHAT'S IN THE KIT?

- □ All the mechanical and electrical components required to make the *INTRO SOLAR CAR* work including the solar panels, motor and switch.
- A detailed teaching unit with a complete parts list, design suggestions, general construction guidelines and suggestions for testing the solar cars.

ABOUT THE PROJECT

The major features of this project are the planning, design, construction and assembly stages of a simple solar vehicle.

DESIGN PHASE

□ Create your own unique *INTRO SOLAR CAR* design based on our drawings. Focus on component relationships, rather than dimensions. This provides scope for students to individualise their *INTRO SOLAR CAR* design and increase their engagement in the project.

During the **Design phase**, students will need to:

- Evaluate the suitability of various materials, such as PVC, acrylic, plywood or balsa wood
- Consider if the school has manufacturing processes they could use, such as laser cutting (which allows more interesting shapes than usual), 3D printing, milling machines, etc.
- □ Determine which gear ratio will be used from the selection of spur and pinion gears provided
- □ Investigate the possibility of adding steering (front wheel steering, radio control, etc.)
- □ Determine if forward/reverse operation is desired (additional components will be required such as an additional two way slide switch)
- □ Take into account weight distribution and ease of operation
- □ Consider the practical aspects of construction and assembly. For example, clearance for the wheels

MAKING / CONSTRUCTION

Once the Design process has been completed, the students will be able to start **building their design**. They will:

- □ Make and assemble the *INTRO SOLAR CAR* platform they have designed
- \Box Mount the 2 x solar panels, motor, switch, axles and wheels on to the platform
- $\hfill\square$ Wire up and solder the solar panels, motor and switch
- □ Test and adjust the *INTRO SOLAR CAR*
- □ Troubleshoot any problems!

OVERVIEW – Intro Solar Car

DOES THE TEACHING UNIT INCLUDE ANY THEORY?

The Teaching unit has a THEORY section that covers

- □ How solar panels (photovoltaic cells) work
- $\hfill\square$ Temperature effects on the power produced by solar panels
- □ The effect of joining 2 solar panel arrays in parallel
- $\hfill\square$ How to calculate speed and acceleration
 - average speed
 - \circ acceleration
 - \circ end velocity

In addition:

- In the Testing section there is information on: How the sunlight angle can affect sunlight level on a solar panel
- The Design section looks at Energy use and Energy losses

WHAT ELSE IS NEEDED?

The following items are required in addition to the kit and must be supplied by the maker – some are available from Scorpio Technology, but need to be ordered separately:

ADDITIONAL REQUIREMENTS	ORDERING CODE	
Material for the platform (plastic and plywood are both suitable) – refer the Design section for more		
Multi strand hook-up wire in assorted colours	WIREHU10	

NOTE: other items such as a small sliding switch, steering components etc will only be required if you choose to incorporate them in your design (Refer Section 3: Design).

TOOLS REQUIRED

The following tools are required. Some are available from Scorpio Technology, and can be ordered separately if required:

REQUIRED TOOLS	ORDERING CODE
Assorted hand tools (depending on materials used)	
Hammer	HAMMERCP/HAMMERCL
Ruler, tape measure and pen	-
Craft knife	CRKNF
Hacksaw with a fine toothed blade (18 TPI upwards)	
Scroll saw or hand saw	
Soldering Iron and Soldering iron stand:	SOLDIRN
 a good quality soldering iron, with a fine tip 	SOLDIRNSTD
or	
Soldering station	SOLDSTN
Solder: – 0.71mm 60/40 solder is recommended	SOLD500
Wire strippers	WIRESTR
Side cutters	SIDECUT or

OVERVIEW – Intro Solar Car

	SIDECUTMIN
Drill (either powered or a hand drill)	
Drill bit 3.0mm	DB3.5
Screwdrivers:	
 Phillips head #1 point for screws 	SCREWDRPH1/80
 Phillips head #2 point for bolts 	SCREWDRPH2/100
Spanner or Multitool for 3mm nuts	or MULTITOOL
Single sided tape / fabric tape / masking tape	TAPESS / TAPEGFW / -
Double-sided adhesive tape (or can use hot glue)	TAPEDS
Hot glue gun	GLUEGUN
Glue sticks – 11mm – Pack of 5	GLUESTK
Flat smooth cut file (for de-burring steel rod ends)	
Sanding block and sandpaper – 180 – 220 grit	
Disposable Gloves – Latex or Nitrile (for handling fibreglass)	468405 / 468417
Safety glasses	LWSN150

ADDITIONAL / USEFUL EQUIPMENT FOR TESTING

Multimeter with probes or banana plugs	MULTIM / MULTIM1527
A calibrated solar panel or Sunmeter - to use with a	SOLAR10
multimeter to show the percentage of sunlight at any	Or
given time	SUNMETER10
Stopwatch	STOP
Tape measure – 30m (or whatever length desired)	TAPEM30

